Exit Ticket Day 2

Simplify.

1.
$$\sqrt{-144}$$

4.
$$-7i + 9i$$
 2i

5.
$$(-7i+3)-(5i-9)$$
 $-12i+12$ 6. $(7i)(-2i)$ 14 $-7i+3-5i+9$ $-14i^2 = -14(-1)$

Math 3 Unit 2

Date:_____ Pd:____

Simplify.

1.
$$\sqrt{-144}$$

2.
$$\sqrt{63}$$

5.
$$(-7i+3)-(5i-9)$$
 _____ 6. $(7i)(-2i)$ _____

6.
$$(7i)(-2i)$$

$$= -11 \pm \sqrt{-23} + -11 \pm i\sqrt{23}$$

$$= 24$$

Math 3

Unit 2 Day 3 notesheet

Name

When a polynomial is in standard form, the degree = highest exponent
example:
$$y = 3x^2 - 5x^6 + 41x^3 - 17x - 2 = -5x^6 + 41x^3 - 17x - 17x - 2 = -5x^6 + 41x^3 - 17x - 17x - 2 = -5x^6 + 41x^3 - 17x - 17x - 17x - 17x - 17x -$$

degree =

When a polynomial is in factored form, the degree = add exponents to gether

example:

$$y = x(x+2)^3(2x-1)^2(x+16)$$

1+3+2+1 degree =

The sign of the leading coefficient = RIGHT end behavior

The end behavior depends on whether the degree is even/odd and the leading coefficient is positive/negative.

*When the degree is EVEN, the graph looks like:

Positive even

Negative even

*When the degree is ODD, the graph look like:

Positive odd

Negative odd

*To determine if the polynomial is +/-, just look at the right-hand end behavior. $(x \to \infty)$

If the right-hand side is pointing up, then it is POSITIVE. If the right-hand side is pointing down, then it is NEGATIVE.

*The left-hand side is determined by the even/odd. $(x \to -\infty)$

If it is even, the branches go in the same direction. (both up or both down).

If it is odd, the branches go in opposite directions. (one is up and the other is down).

	Degree	Leading coefficient	$(x \to -\infty)$ (left)	$(x \to \infty)$ (right)	
	even	positive	Y 700	Y-700	1
	even	negative	14-1-00	147-00	1
	odd	positive	14-00	14700	
1	odd	negative	V-1700	y 17-00	
_					

Multiplicity = number of times each root | x-int. appears

Example:
$$y = x(x-1)^2(x+2)(x+4)^3$$

$$x = 0$$

$$x = 1$$

$$x = -2$$

If the multiplicity = 1, then the gran If the multiplicity = 2 (or any even value), then the graph will

BOUNCE

If the multiplicity = 3 (or any odd greater than 3), then the graph will

Decide whether the graphs are even/odd; positive/negative; what the roots are; and the multiplicity of each root.

A.

B.

ven odd both ends up positive negative RIGHT NP

$$y = \chi^{2}(x-2)(x-4)$$

positive negative

$$Y = -(x+3)(x)(x-3)$$

positive negative

$$y = \chi^2 (\chi - 3)^3$$